The spectrum of filament entanglement complexity and an entanglement phase transition

The spectrum of filament entanglement complexity and an entanglement phase transition

 

G. Buck and J. Simon

DNA, hair, shoelaces, vortex lines, rope, proteins, integral curves, thread, magnetic flux tubes, cosmic strings and extension cords; filaments come in all sizes and with diverse qualities. Filaments tangle, with profound results: DNA replication is halted, field energy is stored, polymer materials acquire their remarkable properties, textiles are created and shoes stay on feet. We classify entanglement patterns by the rate with which entanglement complexity grows with the length of the filament. We show which rates are possible and which are expected in arbitrary circumstances. We identify a fundamental phase transition between linear and nonlinear entanglement rates. We also find (perhaps surprising) relationships between total curvature, bending energy and entanglement.

This entry was posted in Biology, Physical Knots. Bookmark the permalink.

Comments are closed.